
BC205: Algorithms for Bioinformatics. IV. Motif
Discovery

Christoforos Nikolaou

April 26th, 2017

In previous chapters

I We saw how:
I We define a sequence motif
I We can search for known short motifs with a determined degree

of ambiguity
I We can estimate the existence of a motif in a sequence
I We can define the strength of the motif in the sequence in an

Entropy-based score

The ‘hard’ motif finding problem

I Given a set of sequences, can you locate sequence instances
that will represent a motif?

I In simpler words: How do we discover motifs in sequences?

Part #1: Formulating the problem

1. Given a set of s sequences: Find a set of k-mers (for a given
length k, one from each sequence) that maximizes the score (or
minimizes the distance) of the each (one) k-mer with its
sequence

2. Collect k-mers
3. Create a motif from them

The Brute Force Approach

I Assuming we have a way to calculate the distance of a k-mer k
from a given sequence seq

for seq in sequences:
for k in kmers:

if distance(k, seq)<min_distance:
min_distance<-distance(k,seq)
motif[seq]<-k

Brute Force Approach: Implications

I What is the complexity of the BFA?
1. Number of k-mers 4k

2. Number of k-mers in each sequence: (n − k + 1)
3. Number of calculations for each k-mer given s sequences of

length n: (n − k + 1)s

4. Total number of calculations 4k(n − k + 1)s

I The complexity of the algorithm is at least O(ns).
I We need something faster!

Going back to scoring a motif

I Assuming a set of s sequences and a given consensus k-mer k:
What is the Total Distance of the kmer for all sequences?
1. We can do this “vertically”. Report mismatches as we slide the

motif per sequence and then adding the number of mismatches
per column

2. But we can also do this horizontally. That is summing up the
mismatches per sequence instead of per position in the sequence

I Why is this important?
I The problem we were trying to solve becomes finding a median

string

Vertical vs Horizontal Parsing
I Simply Enumerating the mismatches horizontally is equivalent

to parsing the sequences vertically.

Pattern T C G G G G A T T T C C Distance

Seq1 T C G G G G a T T T t t 3
Seq2 c C G G t G A c T T a C 4
Seq3 a C G G G G A T T T t C 2
Seq4 T t G G G G A c T T t t 4
Seq5 a a G G G G A c T T C C 3
Seq6 T t G G G G A c T T C C 2
Seq7 T C G G G G A T T c a t 3
Seq8 T C G G G G A T T c C t 2
Seq9 T a G G G G A a c T a C 4
Seq10 T C G G G t A T a a C C 3
SUM 3 4 0 0 1 1 1 5 2 3 6 4 =30

Part #2: Finding the Median String

I Assuming we have a way to calculate the distance of a k-mer k
from a given sequence seq

for k in kmers:
for seq in sequences:

if distance(k, seq)<min_distance:
min_distance<-distance(k,seq)
motif[seq]<-k

I Because each k-mer needs to pass only once through each
sequence, the median string has O(4k) complexity because k is
(usually) much shorter than the length of the sequence.

I However, it is still quite slow and for k>10 its implementation
is still unapplicable.

Part #3: A faster heuristic approach

I Assume a greedy approach to go through all sequences
updating a motif every time

I Starting from sequence i:
1. find the most common k-mer
2. create a profile from it (adding pseudocounts to all 0-values)
3. go to the next sequence
4. choose the k-mer that best fits the profile
5. store that k-mer in the collection and update profile
6. iterate steps 3->5.

I We’ ve just described a Greedy approach for discovering a
motif p of a given length k among t sequences.

Trying a Greedy Approach for Motif Discovery

I Assuming a set of s sequences and a given consensus k-mer k:
We will construct a PWM “on the go” as we move from one
sequence to the next.
1. For i=1 :
2. For each k in seq[i]:

2.1 For i = 2 to i = s:
2.2 Find the best (smallest distance) kmer in seq[i]
2.3 Build a profile
2.4 If the score(profile) is better than all previous update profile

Repeat

Greedy Approach: Implications

1. Why Greedy: It takes kmers from the first sequence only to
scan in the following. Thus it doesn’t go through all
combinations of sequences and k-mers. As we’ve seen above
the trade-off is speed.

2. KEY: It assumes that all sequences contain the motif. If the
first sequence doesn’t contain the motif (in any variation) then
we are doomed in looking for something that is non-sensical.

3. A way to go around this is to sample a small percentage of
sequences randomly, which brings us to the next-to-last chapter
of the motif finding problem

Part #4: A Randomized Approach

I In the Greedy Approach we take the kmers from the first
sequence and scan over the rest. In this way an initial wrong
choice may lead you to disastrous results.

I In a Randomized Approach we start, instead with a
collection of s k-mers, one from each sequence, build a profile,
scan the sequences with that profile, update it and repeat until
the k-mer set is good enough match for the updated profile.

I Stop and think of the problems we get rid of with this
approach.

A Randomized Approach: Pseudocode

I Starting from s sequences and a kmer length k. We set a
threshold for the distance of the profile we want to assure:

for seq in sequences:
profile[seq]<-random(k, seq)

while distance(profile, sequences)>threshold
for seq in sequences:

choose the best k based on
the current version of the profile
and replace the corresponding ;
profile[seq]<-max(k, profile, seq)

Think: Why would the randomized approach work better?

I It’s all about the probability. Given that the motif really is
somewhere in our sequences it is more likely to pick a k-mer
that is close to the probability of the profile instead of the
background composition.

I This is then further improved every time since the iteration is
based on an optimization process.

I Also think: There is a great chance that most (even all) k are
changed in every iteration of the algorithm. This radical
approach can increase the time of algorithm completion. Can
we devise a more “careful” strategy?

Gibbs Sampler: An improved Randomized Approach
I Based on the randomized approach it just applies the iteration

to one sequence each time.

for seq in sequences:
profile[seq]<-random(k, seq)

while distance(profile, sequences)>threshold
randomly sample one sequence out of the set
seq<-random(sequences):

choose the best k based on
the current version of the profile
and replace the corresponding ;

profile[seq]<-max(k, profile, seq)

I In this way it is more conservative than a fully randomized
approach. It proceeds with greater caution than the fully
randomized approach

The Randomized Approach: Implications

I It strikes a balance between speed and accuracy. It is fast and
more robust than the Greedy Approach

I It doesn’t need to have the motif in every sequence since
sampling is performed

I Multiple runs are affordable because of the its speed and so we
can increase accuracy through “voting” (take the profile that is
represented in the greatest number of repeats)

I The Gibbs Sampler falls into a general category of
semiheuristic methods for optimization problems that attempt
to “explore” the space of solutions in the neighborhood of a
given solution. They are often quite efficient in finding global
instead of local solutions.

Regulatory Motif finding: Other aspects to consider

I Even the most elaborate of motif finding approaches fall short
of retrieving the regulatory potential of sequences without
additional information. Information that is used falls in the
following main categories:
1. Positional aspects: Clustering/clumping of motifs. Motif density
2. Structural information: Affinity with known protein structures

increases prediction accuracy
3. Sequence Conservation: Approaches that take into account

motif conservation outperform most others
4. High throughput Experimental validation: ChIP approaches

coupled with NGS offer unprecedented precision and lead to
refined predictions and valuable insights in the regulatory
process

5. Gene Expression correlation: Powerful but imply a great number
of experiments is available

1. Positional Effects

I Clustering of TFBS is often observed, especially in regions with
high regulatory potential, called CRM (cis-regulatory modules).
CRMs are the “signature” of many enhancer sequences

Computational Techniques for “motif clumping”:

I These are based on:
I Definition of motifs
I Modeling of their co-occurrence based on some statistical model

for their distribution (Poisson or, more often, Negative
Binomial)

I Alternative approaches include HMMs for the definition of a
“motif cluster”

2. Structural Information

I Knowledge of the protein that bounds a specific regulatory
motif may assist us in the refinement of the prediction.

I For instance, a very common protein family called “Zinc
Fingers” has a specific modular architecture with similar
residues repeated periodically

Structural Information

I This information can be used to:
I Create aminoacid-nucleotide preference maps
I Refine the initial predicted binding sites

3. Sequence Conservation
I The conservation of the genome sequence is the first and

ultimate indication of function.
I Availability of sequences from related species can assist us in

locating “genomic functional footprints”

I In the Figure above, sequences from genic and intergenic
regions show similar patterns of conservation. In some aspects,
the intergenic region is even more conserved

Sequence Conservation
By stratifying conservation at genic and intergenic level, Kellis et al
(2004) achieved to identify a number of previously unreported TFBS
in yeast.

The strategy was to identify kmers that: a) are more conserved in
intergenic than genic regions, b) occur in the gene upstream regions
of similar genes c) the “genomic neighborhood” is conserved

4. High-Throughput Experimental Support

I The state of the art experimental methodologies provide us
with a large number of potential sequences from which we draw
the motifs. In this way:

I We have experimental support of likely motif existence
I We have big sequence numbers that allow us to sample motifs

High-Throughput Experiments: Regulatory Insight

I Multiple high-throughput experiments (or other experimental
techniques applied in parallel) allow us to define the
compendium of TFBS in the promoters of genes and thus:
1. Establish regulatory links between genes
2. Reconstruct the regulatory network of a given condition

5 Gene Expression correlation

I Availability of gene expression experiments can help us deduce
the regulatory background

I Algorithms may take into account gene expression levels that
assist in assigning existence/function/classification of motifs

I In the example above can you say what is the function of the
NRSF protein?

Conclusions

I Ab initio approaches can be fast but their accuracy is always
dependent on the sequence input (junk in - junk out). If the
initial sequence set does not include the motifs or is too
“diluted” in terms of information, most approaches will fail

I Ensemble methods, that incorporate other types of information
are preferable

I Sequence conservation and gene expression are the best options
for complementary information

Exercises: To think about

I Implement the Gibbs Sampling Approach on the
motifs_in_sequence.fa file to define the pattern that is
implanted in the sequences

I Extract the Consensus and the WebLogo of the motif

