
BC205: Algorithms for Bioinformatics. III.
Analyzing Biological Motifs

Christoforos Nikolaou

March 22nd, 2017



In previous chapters

I We saw the limitations of composition approaches
I They can give us rough estimates of sequence properties
I They are not precise in locating elements such as HGT, OriC etc

Lucky for us many problems in biology are related with much more
specific signals



Motifs

I Most (in not all) forms of messages employ “motifs” for:
I repat/emphasis : e.g. “I have a dream”, MLK, “March on

Jobs and Freedom Speech” “Crawth the raven, Nevermore”,
Edgar Allan Poe

I coherence: e.g. “Who controls the past, controls the future”,
George Orwell “1984”

I subtextualization: e.g. “Fair is foul and foul is fair”, William
Shakespeare, “Macbeth” (and almost all of “Pulp Fiction”)

I internal reference: e.g. all “leitmotivs” in Operas



Motifs in Biology
I Genome: Codons, Transcription factor binding sites, CpG

islands,
I All areas of the genome that interact with proteins in

sequence-dependent manner
I Protein: Patterns of aminoacids that are related to particular

function, modules, domains etc



Motif-related biological problems

I How to define a motif?
I How to locate a known motif?
I How to evaluate the motif?
I How to discover unknown motifs in a sequence?



Problem #1: What is a motif?

I How do we define a biological motif?
I What do we need as input?
I What will the output be?



Problem #1: Input

I Given a set of oligonucleotides that fulfil a certain function:
I Sequence have variability, so we should:
I Define the motif as a coherent entity that describes all instances

of the sequence



Problem #1: Consensus Sequence

I We may define as “consensus” either the most common
sequence variant or

I A set of rules (in the form of a “regular expression”) that
describes all instances of the motif



Problem #1: The problem with the Consensus approach

I As the instances we collect grows bigger, the variants increase
I Regular Expressions don’t work

How do we describe all the variants without losing in specificity?



Algorithmic Interlude: Edit Distances

I We need a measure to describe differences between variants
I E.g.:

I How different from the most common instance GGGAATTCCC
is AAAAATTCCC?

I How different from the most common instance GGGAATTCCC
is GGGTTTACCC?



Edit Distances

I Levenshtein Distance. Allows
Insertions/Deletions/Substitutions

I Hamming Distance. Allows substitutions only
I Longest Common Subsequence (LCS). Allows

Insertions/Deletions only
I Damerau-Levenshtein Distance. Allows

Insertions/Deletions/Substitutions and Transpositions
I Jaro Distance. Allows Transpositions only.

The Hamming Distance is the one that best fits our goal for now,
but we’ll revisit some of the above in the future.



Hamming Distance in motifs

Simply calculate the number of nucleotides that need to be changed
from S1 to become S2, assuming two sequences of equal size



Problem #1: Calculate the Hamming Distance of two
strings

seq1=str(raw_input("Give the 1st sequence to compare: "))
seq2=str(raw_input("Give the 1st sequence to compare: "))

distance=0

if len(seq1) == len(seq2):
for i in range(len(seq1)-1):

if seq1[i]!=seq2[i]:
distance=distance+1

print "Hamming Distance is equal to: ",distance

if len(seq1) != len(seq2):
print "Cannot Calculate Hamming Distance"



Problem #1: The problem with Hamming/Edit Distances

I Assuming the motif is GGG [AG ][AG ]TT [TC ]CC how good a
motif is:

1. AAAAATTCCC?
2. compared to GGGTTTACCC?

I We actually have two problems:
I We cannot compare with a “consensus” regexp
I Even if we did compare with most common sequence variant,

the results would be misleading

Why?



Not all positions in the motif are equal

I Comparison of instances with the Hamming Distance disregards
the local tendencies in the motifs position

I We need to account for the fact that some positions are more
“fixed” and other more “flexible”

I We need a probabilistic description of the motif



Problem #1: Defining a motif with PWM

I Given a number of sequence of equal size
I Calculate the probabilities of occurrence of each nucleotide for

each position in the sequences
I Create a table of the probabilities



Try it yourselves

I Get the sequences of the GATA binding protein from here
(https://tinyurl.com/ms6rm24)

I Write a program that will create a PWM

https://tinyurl.com/ms6rm24


Calculating a PWM from a sequence dataset

"your code here"



Problem #1: PSSM: PWMs without the background
I PWM are sensititve to background nucleotide composition
I This means that sequences rich is some nucleotides will tend to
“load” motifs with those nucleotides

I By now we know how to control for that by dividing over a
background model

I PSSM (Position-Specific Scoring Matrices) are motifs derived
like this:



Problem #2: Finding a motif in a sequence with
PWM/PSSM

I Calculate the PWM scores of AAAAATTCCC and
GGGTTTACCC. How does this compare with their Hamming
Distances

I Now think of how you can use the PWM to scan a longer
sequence



Problem #2: Finding a motif: PSSM vs PWM

1. Given a PWM, can we calculate the probability of a given
pattern to match the motif?

2. What should we be careful about the probability calculations?
[Hint: Products are sensitive to 0s]
2.1 We should be careful to add “pseudocounts” to PWMs or
2.2 Work with sums instead



Problem #2: PSSM search

import numpy as np

pssm=np.genfromtxt('pssm.tsv', names=True,
+delimiter='\t', dtype=None)
size=len(pssm)

score=[0 for x in range(len(seq)-size)];

for i in range(len(seq)-size+1):
pattern=""

for j in range(size):
pattern=pattern+seq[i+j]

score[i]=score[i]+pssm[seq[i+j]][j]
print pattern,"\t",score[i]



Problem #2: Finding a motif: PSSM vs PWM

1. See how noisy the PWM output is. Why?
2. What makes the PSSM more specific?



Problem #3: Evaluating a motif instance

We saw how every motif can be described as a PWM. But:
1. How are different PWM describing patterns?
2. How strong is the motif given its PWM?



Mathematics Interlude: Information as Entropy

I In 1948 Claude Shannon’s pioneering work on message
transmission introduce a fundamental concept and gave rise to
a whole field of Science called “Information Theory”

I The basis of information theory is the concept of Entropy
which is defined as:

I Given the set S of n probable outcomes of a “source”, each of
which has probability P[i ]

I The “Shannon” Entropy of this source is equal to the negative
sum of the products of those probabilities and their logarithms,
such as: H(S) = −

∑n
i=1 P[i ]log(P[i ])



Mathematics Interlude: Information as Entropy

I It derives from Shannon’s formula that Entropy maximizes
when all possible outcomes have equal probability

I This is directly related to the notion of Entropy as you know it
from Physics. Can you see how?



Stop and think: How is this related to motifs?

I A motif where all positions are equiprobable for all nucleotides
has maximum Entropy

I It also conveys the least possible information. There isn’t
absolutely anything it can tell us about where the sequence has
embedded a message

I According to Information Theory, Information can be measured
as the change in the Entropy before and after a message has
been transmitted: I(S) = H(S)before − H(S)after



Problem #3: Evaluating a motif with Information (I)

I What is the maximum entropy for any given position in a
motif?
H(S)before = −

∑4
i=1 P[0.25]log(P[0.25]) = 2

we will call this the before Entropy
I What is the entropy once the message has been transmitted?

We will denote as “after” the entropy we can calculate from
the PWM:
H(S)after = −

∑4
i=1 P[i ]log(P[i ]) = H and thus

I(S) = 2 − H(S)after
I The key is that the smaller the H(S)after the more we have

gained as information, since we are reducing the uncertaintly
of the message



Problem #3: Calculating the Information Content of a
motif

I Each position in the motif gets a score I(p)
I Each nucleotide in each position gets a weight equal to

P ∗ log(P)



Problem #3: Plotting Information as Sequence Logo



Problem #3: Create a logo

1. Download a set of motif instances from the GATA binding
factor here (https://tinyurl.com/ms6rm24)

2. Go to the Webpage of Weblogo, an implementation of the
Sequence Logo concept here:
(http://weblogo.berkeley.edu/logo.cgi)

3. Paste in sequences
4. Obtain Logo

https://tinyurl.com/ms6rm24
http://weblogo.berkeley.edu/logo.cgi


Problem #3: Evaluation of motifs

Compare the top5% scores of our PSSM and PWM search



Problem #4: The hard one

I Given a set of sequences, can you locate sequence instances
that will represent a motif?
These should fulfill the following:
1. They should be more common than other (how much more

common?)
2. They should occur in close vicinity to each other (but how

close?)
3. They are probably going to be conserved in evolution (but how

are we going to see this?)

I Next time: How do we discover motifs in sequences



Exercises: To think about

1. Write a program to scan a sequence of DNA with a given
pattern with length L and extract all substrings with Hamming
distance of d <= 2/L. Key: Think of ways to make it faster

2. Write a program that will take the GATA sequences and input
and will produce a PWM

3. Take the above program and combine it with an analysis of
genomic sequence composition (see previous chapter) to:
3.1 Create a background composition model
3.2 Create a PSSM based on the BC model and the PWM

4. Write the code that given a set of sequences of equal size N,
will produce the Entropies and total Information per position
that you can use to create a logo


