
BC205: Algorithms for Bioinformatics. II.
Sequence Analysis

Christoforos Nikolaou

March 15th, 2017

The biological problems:

I Compare different species on the basis of DNA composition
I Find evidence of horizontal gene transfer in a bacterial genome
I Locate the Origin of Repication of a Bacterial Genome

Aspects of DNA Composition

I GC content
I genomic signatures
I parity distributions
I k-mer frequencies

GC content

We call GC content (or GC%) the ratio of (G+C) nucleotides of a
given DNA sequence * Why is it important:

GC is related to:

I Biochemical level: Thermal stability
I Evolutionary level: Organism Phylogeny, Mutational pressures
I Genomic level: Genome size
I Functional level: Functional role of underlying sequences
I and many more

GC content in Genomic Sequences

I Bacteria: GC% is highly variable between species
I Bacteria: GC% is rather homogeneous within each genome
I Bacteria: GC% can be used in their classification

GC content in Genomic Sequences

I Eukaryotes: Very homogeneous overall GC% (~40-45% in all
animals)

I Eukaryotes: Fluctuation of GC contentalong the chromosomes
and organization in areas of (rather) stable GC%

I Eukaryotes: Regions of stable high/low GC content that
segregate mammalian genomes in isochores

Isochores in a mammalian genome

Figure 1: GC content along a mammalian genome

Problem 1: GC content in Bacterial Genomes

I Given the DNA sequence of a Bacterial Genome, calculate its
GC content:

I Read the Sequence
I Enumerate G
I Enumerate C
I Divide (G+C) over length of the sequence

Problem 1: Implementation

f = open('ecoli.fa', 'r')
seq = ""
window=1000
total = 0
A=T=G=C=[]
times=0;
for line in f:

x=re.match(">", line)
if x == None:

length=len(line)
total=total+length
seq=seq+line[0:length-1]

f.close()
C=seq.count("C")
G=seq.count("G")
print (float(G)+float(C))/len(seq);

Hands on #1:

I Download a couple of bacterial genome sequences from
ENSEMBL Bacteria
(http://bacteria.ensembl.org/index.html)

I Implement GC content
I Report the results

http://bacteria.ensembl.org/index.html

Problem 2: Variability of GC content between Bacterial
Genomes

I Given a number of bacterial genomes:
I Get their genome sequences
I Calculate the GC contents
I Calculate differences between the GC contents
I Rank genomes based on their differences

I Pseudocode:
I Perform GC_content on each of the genomes you downloaded
I Calculate D_(i,j)=|GC_i-GC_j| over all i,j
I Sort D_(i,j)

Problem 2: Approach

I Instead of Sorting Distances, we can do something better
I Use clustering (of any type) on the distance matrix

gc_values=c(0.334, 0.595, 0.668,
+0.409, 0.511, 0.352,
+0.354, 0.418, 0.434, 0.627)

species=c("a-Bac1","e-Bac2","e-Bac3",
+"g-Bac4","e-Bac5","a-Bac6",+

"a-Bac7","g-Bac8","g-Bac9",+
"e-Bac10")

Create distance matrix of values with dist()
gc_dist<-dist(gc_values)
plot(hclust(gc_dist), labels = species, +

xlab="Species", ylab="GC% Distance")

Problem 2: Approach

a−
B

ac
1

a−
B

ac
6

a−
B

ac
7

g−
B

ac
9

g−
B

ac
4

g−
B

ac
8

e−
B

ac
5

e−
B

ac
3

e−
B

ac
2

e−
B

ac
10

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

Cluster Dendrogram

hclust (*, "complete")
Species

G
C

%
 D

is
ta

nc
e

Problem 3: What about different regions of the genome?

I We just saw how genomic GC% values may be used to draw
conclusions for bacterial phylogeny

I But: How representative is the GC% value you calculated
above?

I And: How efficiently can it be used to describe a genome?

Problem 3: Why should we care?

I We mentioned that GC% is stable within bacterial genomes
I But Some areas of bacterial genomes are special

I Parts of the bacterial genome have been “horizontally” (as
opposed to vertically, i.e. from their “mom”) transferred from
other species.

Problem 3: Stability of GC content along Bacterial
Genomes

I Regions of “strange”, or “divergent” GC% values in a given
genome are red flags of HGT. The problem now is:

I Given a bacterial genome sequence:
I Locate regions of the genome where horizontal gene transfer

may have occurred.

Problem 3: Approach

I Choose a window to scan your sequence. This will be your
resolution

I Calculate GC per window
I Try to locate GC values that deviate from the genome average

Problem 3: The core

window=1000
step=100
times=len(seq)/step;

for i in range(times):
DNA=seq[i*step:i*step+window]
A=DNA.count("A")
T=DNA.count("T")
C=DNA.count("C")
G=DNA.count("G")
print i*step,"\t",i*step+window,"\t",

+(float(G)+float(C))/window;

Hands on #2:

I Get the genome sequence of St. aureus
I Implement Sliding GC
I Plot the results in R

GC content along the Genome of St. aureus

I It should look something like this
I Now how do we locate HGT candidates?

Problem 3: Statistics Interlude

I Given a set/sample of values, how can we decide on whether a
value could be part of that sample or not?

I In our problem: We know that the GC% of bacteria tends to
be characteristic of the genome. Can we “spot” regions of the
genome that bear GC% values that are different from that
characteristic value?

I Q1: How will we define that characteristic value?
I Q2: How will we quantify the difference as big enough or not?

Problem 3: Theoretical basis (simplified)

I Central Limit Theorem (simplified):
I Regardless of the underlying distribution, the means of a large

number of samples follow the normal distribution.
I We can thus model GC values per window based on the normal

distribution

Modeling with the Normal Distribution

Figure 2: The Bell Curve

Problem 3: The statistics

I We will model the “characteristic value” as the mean of GC
values for all windows

I We will also calculate the standard deviation of these values to
model variance

gc_mean=0.33
gc_sd=0.04
x<-rnorm(5000, mean=gc_mean, sd=gc_sd)
my_gc1=0.381
my_gc2=0.452

Problem 3: The statistics

hist(x, breaks=100, col="firebrick",
+main="GC content distribution",
+las=1, xlab="GC", ylab="Number of Segments",
+xlim=c(gc_mean-3.5*gc_sd, gc_mean+3.5*gc_sd))

abline(v=my_gc1, col="darkred", lwd=3)
abline(v=my_gc2, col="darkgreen", lwd=3)

Problem 3: The statistics
GC content distribution

GC

N
um

be
r

of
 S

eg
m

en
ts

0.20 0.25 0.30 0.35 0.40 0.45

0

20

40

60

80

100

Z-transformation

I Notice the difference between the position of the two vertical
bars in the previous plot. One is much more “inside” the
distribution than the other

I Can we have a quantitative measure of this?
I Given a value x, we can compare x to a normal distribution

with mean=m and standard deviation=std with the z-score:
Z(x)= (x - m)/std
Z(x) is thus the difference of x from m in units of standard
deviation.
Knowing that in a normal distribution ~99% of the values fall
within +/-2*std a value of Z(x)>2 or Z(x)<-2 makes it highly
unlikely that x is part of our distribution.

Problem 3: The Statistics

gc_mean=0.33
gc_sd=0.04
x<-rnorm(5000, mean=gc_mean, sd=gc_sd)
my_gc1=0.381
my_gc2=0.452
z1=(my_gc1-gc_mean)/gc_sd
z1

[1] 1.275

z2=(my_gc2-gc_mean)/gc_sd
z2

[1] 3.05

Problem 2: Revisited

Let’s take another look at the GC analysis of the St. aureus genome

The problem:

I Background DNA composition has some functional role
besides simply reflecting mutational pressures

I This means that in some cases we need to know why the local
composition is guided by other aspects of molecular evolutio.
E.g. why would rRNA genes be G+C-rich even in AT-rich
genomes?

I We need to find a way to control for background nucleotide
composition

Problem 2 Revisited: Distinguishing between genomes
through their sequence composition

1. Going beyond the GC content
2. Going beyond simple bases (mononucleotides, k=1)
3. Analyzing all dinucleotide frequencies of k=2

I Pseudocode:
I For each kmer in 4k k-mers
I Calculate N(kmer)
I Create a table

Problem 2 Revisited: K-mer frequencies

import re
import math
import itertools

bases=['A','T','G','C']
k=2
kmer=[''.join(p) for p in
+itertools.product(bases, repeat=k)]
counts={}

for i in kmer:
counts[i]=seq.count(str(i))
print '%s %.3f' % (str(i),float(counts[i])/len(seq))

Problem 2 Revisited: A table of 4k frequencies of
occurrence

Base A T G C

A 0.090 0.112 0.048 0.053
T 0.095 0.090 0.064 0.053
G 0.052 0.052 0.023 0.034
C 0.066 0.048 0.026 0.023

I Values may be seen as “probabilities” of finding each k-mer in
the sequence

I Can we use the notion of the probability to modify the table so
that we get rid of the background nucleotide composition?

Problem 2 Revisited: Removing Background Composition

I The problem stated above persists at the level of k-mers: The
background DNA composition may affect our results

I At the k-mer level we can remove the background using ratios
of observed/expected frequencies

I Which is the expected frequency of a given k-mer?

Problem 2 Revisited: Observed/Expected(o/e) k-mer
frequencies

I Mathematics Interlude:
I Assume two events A, B that are linked with each other
I We then say tha A and B are dependent (or conditioned) and

we have a “conditional probability” of A happening given B is
also happening

I We can think of k-mers the same way: a k-mer is more probable
to occur if its constituent mono-mers are occurring

I Bottomline: Any given k-mer’s frequency of occurrence is
dependent on the frequencies of occurrence of its
mononucleotides. Thus:

Given a k-mer of length k the o/e-ratio frequency is defined as:
R[N1N2..Nk] = F [N1N2..Nk]/(F [N1]F [N2]..F [Nk])

In this way we can define a new table of modified frequencies that is
independent of mono-nucleotide composition

Problem 2 Revisited: Observed/Expected K-mer
frequencies

bases=['A','T','G','C']
k=1
kmer1=[''.join(p) for p in
+itertools.product(bases, repeat=k)]
k=2
kmer2=[''.join(p) for p in
+itertools.product(bases, repeat=k)]
oecounts={}

for i in kmer2:
bg=list(i)
oecounts[i]=float(seq.count(str(i)))/len(seq)
for j in bg:

oecounts[i]/=(float(seq.count(j))/len(seq))
print '%s %.3f' % (str(i),oecounts[i])

Problem 2 Revisited: A table of o/e 4k frequencies of
occurrence

Base A G C T

A 0.800 0.997 0.878 0.949
G 0.848 0.799 1.174 0.957
C 0.946 0.955 0.848 1.252
T 1.183 0.872 0.946 0.841

I Notice how values now go >1. What does this mean?
I How is this table better (or not) than the previous one?

Genomic Signatures: Comparing o/e k-mer composition

I Genomic Signatures are defined as the table of o/e k-mers for a
given genome

I We can use these tables to analyze distances between genomes.
(Hint: even eukaryote genomes!)

Hands on #3:

I Get chromosome 1 from (human, mouse, fly, worm, yeast)
I Use a genomic signature approach to cluster genomic

signatures from different genomes
I You can make use of R’s dist() function on array of values as

well

Problem 4: Finding the DNA Replication in a bacterial
genome

Figure 3

What we know

I Due to the pioneering work of E. Chargaff we know that A~T
and G~C in single-stranded DNA

I We know that this holds for all complete genomes except very
few exceptions

I The exceptions are the few genomes that do not replicate
symmetrically

I DNA-strand parity:
I Strand X is replicated in-continuously
I Accumulates more substitutions
I If substitutions are biased the strand will guide the change in

both strands through base-pairing

Why should you care?

Figure 4: Nucleotide Parity

Approaching the problem

I We thus expect (and observe) the parity to be violated and that
this violation occurs symmetrically on either side of the OriC

I We are looking for a way to locate this phase transition in the
parity violation

I We thus need:
I A measure of the parity
I A way to monitor this measure along the genome
I A way to locate abrupt changes in its values

Breaking the problem into pieces

1. Analyze the DNA composition along the genome
2. Calculate a quantity that will be informative
3. Create a condition that will test the location of the Ori

I Pseudocode: Given a bacterial genome:
I Count nucleotides in windows of N base pairs
I Calculate the scaled AT-skew as (A-T)/(A+T)
I Create an array of the skew values along the genome
I Locate the transition point

Problem 4: Parity Measure Implementation

window=1000
step=100
times=len(seq)/step;

for i in range(times):
DNA=seq[i*step:i*step+window]
A=DNA.count("A")
T=DNA.count("T")
C=DNA.count("C")
G=DNA.count("G")
print i*step,"\t",i*step+window,"\t",float(A-T)/(A+T)

Problem 4: Plotting the Values
data<-read.delim("out", header=F)
plot(data[,2], data[,5], type="h", col="steelblue4")
abline(h=0, lty=2, lwd=2)

0 500000 1000000 1500000 2000000 2500000

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

data[, 2]

da
ta

[,
5]

Problem 4: Plotting the Values
I Using a cumulative approach often helps

data<-read.delim("out", header=F)
plot(data[,2], cumsum(data[,5]), type="h", col="steelblue4")
abline(h=0, lty=2, lwd=2)

0 500000 1000000 1500000 2000000 2500000

−
60

0
−

40
0

−
20

0
0

20
0

data[, 2]

cu
m

su
m

(d
at

a[
, 5

])

Problem 4: Locating the breakpoint(s)

I Not a simple problem. In fact one (breakpoint detection) for
which research is ongoing in many fields

I Things you could try:
I Using derivation (checking the difference between each value

and the previous one)
I Density-based approaches: Trying to locate the region around

which changes in the sign occur more robustly (i.e. given many
different points around it)

Exercises: To think about

I Use a genomic signature approach to locate possible HGT
genes in the genome of St. aureus. Do your results of “outliers”
differ from those obtained with the GC content appoach?

