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The biological problems:

» Compare different species on the basis of DNA composition
» Find evidence of horizontal gene transfer in a bacterial genome
> Locate the Origin of Repication of a Bacterial Genome



Aspects of DNA Composition

GC content
genomic signatures
parity distributions
k-mer frequencies
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GC content

We call GC content (or GC%) the ratio of (G+C) nucleotides of a
given DNA sequence * Why is it important:
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GC is related to:

Biochemical level: Thermal stability

Evolutionary level: Organism Phylogeny, Mutational pressures
Genomic level: Genome size

Functional level: Functional role of underlying sequences

and many more

vV vyVvYyVvyy



GC content in Genomic Sequences

» Bacteria: GC% is highly variable between species
» Bacteria: GC% is rather homogeneous within each genome
» Bacteria: GC% can be used in their classification
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GC content in Genomic Sequences

» Eukaryotes: Very homogeneous overall GC% (~40-45% in all
animals)

» Eukaryotes: Fluctuation of GC contentalong the chromosomes
and organization in areas of (rather) stable GC%

» Eukaryotes: Regions of stable high/low GC content that
segregate mammalian genomes in isochores



Isochores in a mammalian genome
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Figure 1: GC content along a mammalian genome



Problem 1: GC content in Bacterial Genomes

> Given the DNA sequence of a Bacterial Genome, calculate its
GC content:

Read the Sequence

Enumerate G

Enumerate C

Divide (G+C) over length of the sequence
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Problem 1: Implementation

f = open('ecoli.fa', 'r')
seq = ""
window=1000
total = O
A=T=G=C=[]
times=0;
for line in f:
x=re.match(">", line)
if x == None:
length=1len(line)
total=total+length
seq=seq+line[0:length-1]
f.close()
C=seq.count("C")
G=seq.count ("G")
print (float(G)+float(C))/len(seq);



Hands on #1:

» Download a couple of bacterial genome sequences from
ENSEMBL Bacteria
(http://bacteria.ensembl.org/index.html)

> Implement GC content

» Report the results


http://bacteria.ensembl.org/index.html

Problem 2: Variability of GC content between Bacterial
Genomes

» Given a number of bacterial genomes:

Get their genome sequences

Calculate the GC contents

Calculate differences between the GC contents
Rank genomes based on their differences

vV vy vy

» Pseudocode:

» Perform GC_content on each of the genomes you downloaded
» Calculate D_(i,j)=|GC_i-GC_j| over all i,
» Sort D_(i.j)



Problem 2: Approach

> Instead of Sorting Distances, we can do something better
» Use clustering (of any type) on the distance matrix

gc_values=c(0.334, 0.595, 0.668,
+0.409, 0.511, 0.352,
+0.354, 0.418, 0.434, 0.627)
species=c("a-Bacl","e-Bac2","e-Bac3",
+"g-Bac4","e-Bacb","a-Bac6",+
"a-Bac7","g-Bac8","g-Bac9",+
"e-Bacl10")
# Create distance matriz of values with dist()
gc_dist<-dist(gc_values)
plot(hclust(gc_dist), labels = species, +
xlab="Species", ylab="GC), Distance")



Approach

Problem 2

Cluster Dendrogram
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Problem 3: What about different regions of the genome?

» We just saw how genomic GC% values may be used to draw
conclusions for bacterial phylogeny

» But: How representative is the GC% value you calculated
above?

» And: How efficiently can it be used to describe a genome?



Problem 3: Why should we care?

» We mentioned that GC% is stable within bacterial genomes

» But Some areas of bacterial genomes are special
a Bacterial transformation

Easle

Antibiotic-
resistance gene

Donor cell Recipient cell

» Parts of the bacterial genome have been “horizontally” (as
opposed to vertically, i.e. from their “mom”) transferred from
other species.



Problem 3: Stability of GC content along Bacterial
Genomes

» Regions of “strange”, or “divergent” GC% values in a given
genome are red flags of HGT. The problem now is:
» Given a bacterial genome sequence:

» Locate regions of the genome where horizontal gene transfer
may have occurred.



Problem 3: Approach

» Choose a window to scan your sequence. This will be your
resolution

» Calculate GC per window

» Try to locate GC values that deviate from the genome average



Problem 3: The core

window=1000
step=100
times=len(seq)/step;

for i in range(times):
DNA=seq[i*step:i*step+window]
A=DNA.count ("A")
T=DNA.count ("T")
C=DNA.count ("C")
G=DNA.count ("G")
print i*step,"\t",i*step+window,"\t",
+(float (G)+float(C))/window;



Hands on #2:

> Get the genome sequence of St. aureus
» Implement Sliding GC
> Plot the results in R



GC content along the Genome of St. aureus

» It should look something like this
» Now how do we locate HGT candidates?
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Problem 3: Statistics Interlude

» Given a set/sample of values, how can we decide on whether a
value could be part of that sample or not?

» In our problem: We know that the GC% of bacteria tends to
be characteristic of the genome. Can we “spot” regions of the
genome that bear GC% values that are different from that
characteristic value?

» Q1: How will we define that characteristic value?

» Q2: How will we quantify the difference as big enough or not?



Problem 3: Theoretical basis (simplified)

» Central Limit Theorem (simplified):

» Regardless of the underlying distribution, the means of a large
number of samples follow the normal distribution.

» We can thus model GC values per window based on the normal
distribution



Modeling with the Normal Distribution
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Figure 2: The Bell Curve



Problem 3: The statistics

» We will model the “characteristic value” as the mean of GC
values for all windows

» We will also calculate the standard deviation of these values to
model variance

gc_mean=0.33

gc_sd=0.04

x<-rnorm(5000, mean=gc_mean, sd=gc_sd)
my_gc1=0.381

my_gc2=0.452



Problem 3: The statistics

hist(x, breaks=100, col="firebrick",

+main="GC content distribution",

+las=1, xlab="GC", ylab="Number of Segments",

+x1im=c(gc_mean-3.5*gc_sd, gc_mean+3.5xgc_sd))
abline(v=my_gcl, col="darkred", lwd=3)
abline(v=my_gc2, col="darkgreen", lwd=3)



Problem 3: The statistics
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/-transformation

» Notice the difference between the position of the two vertical
bars in the previous plot. One is much more “inside” the
distribution than the other

» Can we have a quantitative measure of this?

» Given a value x, we can compare x to a normal distribution
with mean=m and standard deviation=std with the z-score:
Z(x)= (x - m)/std
Z(x) is thus the difference of x from m in units of standard
deviation.

Knowing that in a normal distribution ~99% of the values fall
within +/-2%std a value of Z(x)>2 or Z(x)<-2 makes it highly
unlikely that x is part of our distribution.



Problem 3: The Statistics

gc_mean=0.33

gc_sd=0.04

x<-rnorm(5000, mean=gc_mean, sd=gc_sd)
my_gcl1=0.381

my_gc2=0.452
z1=(my_gcl-gc_mean)/gc_sd

z1

## [1] 1.275

z2=(my_gc2-gc_mean) /gc_sd
z2

## [1] 3.05



Problem 2: Revisited

Let's take another look at the GC analysis of the St. aureus genome

Staphylococcus aureus
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The problem:

» Background DNA composition has some functional role
besides simply reflecting mutational pressures

» This means that in some cases we need to know why the local
composition is guided by other aspects of molecular evolutio.
E.g. why would rRNA genes be G+C-rich even in AT-rich
genomes?

» We need to find a way to control for background nucleotide
composition



Problem 2 Revisited: Distinguishing between genomes
through their sequence composition

1. Going beyond the GC content
2. Going beyond simple bases (mononucleotides, k=1)
3. Analyzing all dinucleotide frequencies of k=2

» Pseudocode:

» For each kmer in 4% k-mers
» Calculate N(kmer)
» Create a table



Problem 2 Revisited: K-mer frequencies

import re
import math
import itertools

bases=['A"','T','G','C"]

k=2

kmer=['"'.join(p) for p in
+itertools.product(bases, repeat=k)]
counts={}

for i in kmer:
counts[i]l=seq.count (str(i))
print 'Ys %.3f' % (str(i),float(counts[i])/len(seq))



Problem 2 Revisited: A table of 4% frequencies of
occurrence

Base A T G C

0.090 0.112 0.048 0.053
0.095 0.090 0.064 0.053
0.052 0.052 0.023 0.034
0.066 0.048 0.026 0.023

N4>

» Values may be seen as “probabilities” of finding each k-mer in
the sequence

» Can we use the notion of the probability to modify the table so
that we get rid of the background nucleotide composition?



Problem 2 Revisited: Removing Background Composition

» The problem stated above persists at the level of k-mers: The
background DNA composition may affect our results

> At the k-mer level we can remove the background using ratios
of observed/expected frequencies

» Which is the expected frequency of a given k-mer?



Problem 2 Revisited: Observed/Expected(o/e) k-mer
frequencies

» Mathematics Interlude:

» Assume two events A, B that are linked with each other

» We then say tha A and B are dependent (or conditioned) and
we have a “conditional probability” of A happening given B is
also happening

» We can think of k-mers the same way: a k-mer is more probable
to occur if its constituent mono-mers are occurring

» Bottomline: Any given k-mer’s frequency of occurrence is
dependent on the frequencies of occurrence of its
mononucleotides. Thus:

Given a k-mer of length k the o/e-ratio frequency is defined as:
R[Ny Ny..Ny| = F[NyNo..Ng]/(F[N1]F[N2]..F[Nk])

In this way we can define a new table of modified frequencies that is
independent of mono-nucleotide composition



Problem 2 Revisited: Observed/Expected K-mer
frequencies

bases=['A','T','G','C"']

k=1

kmerl=['".join(p) for p in
+itertools.product(bases, repeat=k)]
k=2

kmer2=['"'.join(p) for p in
+itertools.product(bases, repeat=k)]
oecounts={}

for i in kmer2:
bg=list (i)
oecounts[i]=float(seq.count(str(i)))/len(seq)
for j in bg:
oecounts[i]/=(float (seq.count(j))/len(seq))
print '%s %.3f' 7% (str(i),oecounts[i])



Problem 2 Revisited: A table of o/e 4% frequencies of
occurrence

Base A G C T

A 0.800 0.997 0.878 0.949
G 0.848 0.799 1.174 0.957
C 0.946 0.955 0.848 1.252
T 1.183 0.872 0.946 0.841

> Notice how values now go >1. What does this mean?
» How is this table better (or not) than the previous one?



Genomic Signatures: Comparing o/e k-mer composition

» Genomic Signatures are defined as the table of o/e k-mers for a
given genome

> We can use these tables to analyze distances between genomes.
(Hint: even eukaryote genomes!)
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Hands on #3:

» Get chromosome 1 from (human, mouse, fly, worm, yeast)

» Use a genomic signature approach to cluster genomic
signatures from different genomes

» You can make use of R’s dist() function on array of values as
well



Problem 4: Finding the DNA Replication in a bacterial
genome
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What we know

» Due to the pioneering work of E. Chargaff we know that A~T
and G~C in single-stranded DNA
» We know that this holds for all complete genomes except very
few exceptions
» The exceptions are the few genomes that do not replicate
symmetrically
» DNA-strand parity:
» Strand X is replicated in-continuously
» Accumulates more substitutions

> If substitutions are biased the strand will guide the change in
both strands through base-pairing



Why should you care?
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Figure 4. Nucleotide Parity



Approaching the problem

» We thus expect (and observe) the parity to be violated and that
this violation occurs symmetrically on either side of the OriC

» We are looking for a way to locate this phase transition in the
parity violation

» We thus need:

» A measure of the parity
» A way to monitor this measure along the genome
» A way to locate abrupt changes in its values



Breaking the problem into pieces

1. Analyze the DNA composition along the genome
2. Calculate a quantity that will be informative
3. Create a condition that will test the location of the Ori

» Pseudocode: Given a bacterial genome:

Count nucleotides in windows of N base pairs
Calculate the scaled AT-skew as (A-T)/(A+T)
Create an array of the skew values along the genome
Locate the transition point

vV vy vy



Problem 4: Parity Measure Implementation

window=1000
step=100
times=len(seq)/step;

for i in range(times):
DNA=seq[i*step:i*step+window]
A=DNA.count ("A")
T=DNA.count ("T")
C=DNA.count ("C")
G=DNA.count ("G")
print ixstep,"\t",i*step+window,"\t",float(A-T)/(A+T)



Problem 4: Plotting the Values

data<-read.delim("out", header=F)
plot(datal,2], datal,5], type="h", col="steelblue4")
abline(h=0, 1ty=2, 1wd=2)
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Problem 4: Plotting the Values
» Using a cumulative approach often helps
data<-read.delim("out", header=F)

plot(datal,2], cumsum(datal,5]), type="h", col="steelblue4
abline(h=0, 1lty=2, lwd=2)
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Problem 4: Locating the breakpoint(s)

» Not a simple problem. In fact one (breakpoint detection) for
which research is ongoing in many fields
» Things you could try:
» Using derivation (checking the difference between each value

and the previous one)
» Density-based approaches: Trying to locate the region around
which changes in the sign occur more robustly (i.e. given many

different points around it)



Exercises: To think about

» Use a genomic signature approach to locate possible HGT
genes in the genome of St. aureus. Do your results of “outliers”
differ from those obtained with the GC content appoach?



