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Algorithms in Bioinformatics

The course will cover:

I An introduction to the concept of Algorithms
I A listing of some of the major problems of Bioinformatics
I A detailed description of algorithmic approaches to these

problems



Instructors

I Christoforos Nikolaou, Dept. of Biology
I Introduction
I Motif Search
I NGS algorithms

I Ioannis Tsamardinos, Dept. of Computer Science
I Sequence Alignment and Dynamic Programming

I Ioannis Tollis, Dept. of Computer Science
I Graph algorithms

I Kleio Lakiotaki, TA, Dept. of Computer Science



Evaluation

I Exercises to be handed in (depends on the instructor)
I Final exam



Reading

I Introduction to Algorithms. (Cormen, Leiserson, Rivest
and Stein) for a general intro, but may be rather tecnhical for
biologists

I Introduction to Bioinformatics Algorithms. (Pevzner and
Jones) covers basic Bioinformatics algorithms with a right
balance between CS and Biology

I Bioinformatics Algorithms. A practical approach
(Pevzner and Compeau) very good choice for both
disciplines, with a lot of practicals

I Genome-scale Algorithm desing (Tomescu, Bellazzougui,
Cunial and Makinen) NGS-related but quite tecnhincal



Course Outline

I Introduction, concepts and algorithmic warm-up
I Analyzing Sequence Composition
I Motifs: Search, Evaluation and Discovery
I Sequence Alignment
I Data structures for NGS applications
I Algorithms inspired by NGS problems (mapping, peak finding

and differential expression)
I Graph Algorithms



What is an Algorithm

Formally

Algorithm: A systematic and well-defined procedure that
produces, in a finite number of steps, the answer to a
question or the solution of a problem.
[Encyclopaedia Britannica]

Informally

“Any well-defined computational procedure that takes
some value, or sets of values as input and produces some
value, or sets of values as output.”
[Cormen, Leiserson, Rivest & Stein]

“Transforming input into output is also good to make
some sense!” [me]



Problems of Bioinformatics (that we will be discussing)

I Analyzing Sequence Composition (Algorithmic Introduction)
I Searching/Matching/Extracting Motifs in Sequences

(Randomized Algorithms)
I Comparing Sequences through Alignments (Dynamic

Programing)
I Phylogenetic Reconstruction (Clustering Algorithms)
I Next-generation Sequencing Analysis (Data Transformations)
I Biological Networks (Graph Algorithms)



(Simple) Examples of Algorithms

1. Finding the largest common divisor of two numbers
2. Sorting a set of integers
3. Calculating the Fibonacci series for up to a number N



Thinking the problem through

I The hardest part:
I What is the input?
I What is the (expected) output?
I How can we do it?
I How can we do it faster?



A more serious problem

Figure 1: Where’s my phone



How should we go about finding the phone?

I Go through every room starting from the closest to the one
that is farther away (Exhaustive Search/Brute Force)

I Exclude some/many obvious impossible position (e.g. phone is
heard through the ceiling, so you skip searching the floor you
are now) (Branch-and-Bound/Pruning)

I Proceed directly towards the sound regardless of obstacle
(walls, furniture) in between (Greedy Approach)



How should we go about finding the phone?

I Suppose someone/something can tell you if the phone is/is not
in a part of your flat (e.g. “-Mom, is my phone on the kitchen
table? -No, it’s not!”). You can then use a series of questions
to narrow down the available search space
(Divide-and-Conquer, Dynamic Programming)

I Suppose this has happened to you before. Drawing from your
experience with real data you search specific “highly likely”
places (e.g. between the sofa cushions, under my son’s pillow).
(Machine Learning)

I You can always flip a coin before you choose which direction to
go search for your phone. It may appear counter-intuitive but
sometimes it works (Randomized Algorithms)



Case 1: The Largest Common Divisor Problem

Figure 2: Euclid’s LCD Algorithm



Euclid’s Algorithm for LCD

1. Start with two numbers a, b (a > b)
2. Divide a/b and keep the remainder c
3. Now, divide b/c and keep the remainder d
4. Repeat the division until there is no remainder
5. Report the last divisor and the LCD of a and b.



Let’s make it more formal. Pseudocode

Input: A, B

# C=remainder(A/B)

if (C is greater than 0) {B->A; C->B; goto #}

if (C equals 0) {print LCD=C; end}



Writing the damn thing: Programming

I You can choose your language of choice.
I Our focus will not be so much on coding as on the design and

the general approach



Euclid’s Algorith for the Largest Common divisor

(Python Implementation)

def euclid(a,b)

# Euclid's Algorithm for the largest common divisor
while (b > 0):

a, b = b, int(a)%int(b)

print a



What does this algorithm do?

# enters an iterative process if b > 0
while (b > 0): # Checks if the smallest of the

# numbers is > 0
# b is basically the remainder #
#of the division

# swaps a and b with b and the
# remainder of the division
a, b = b, int(a)%int(b)

# Calculates the division
# Extracts the remainder
# Makes the swap

print a # returns the result as the
# last divisor that (gave 0 remainder)



Case 2: Sorting a series of integers

Starting with N integer, order them from the smallest to the largest



Take #1: InsertionSort (Exhaustive)

Figure 3: Insertion Sort



Insertion Sort. Pseudocode

Start with a list of L[N] numbers:
For i in 2 to N:

value<-L[i]
j=i-1
while j>0 and L[j]>value:

L[j+1]=L[j]
j=j-1

L[j+1]<-value



Insertion Sort (Python code)
def insertionSort(alist):

# starts with the second element till the end of
#the list
for index in range(1,len(alist)):

# assigns the ith-element of the list to a value
currentvalue = alist[index]
# marks its position
position = index
# if a) the position of the element is not
# the first in the list
# and b) if the value of the element
# is bigger than the previous
while position>0 and alist[position-1]>currentvalue:

# exchange positions with the previous element
alist[position]=alist[position-1]
position = position-1

alist[position]=currentvalue



Take #2: MergeSort (Divide and Conquer)

Figure 4: Merge Sort



MergeSort Pseudocode (Recursion)

Start with a list of L[N] numbers:
# Split L[N] into two half-lists: A[N/2] and B[N/2]
A[N/2]<- Goto #(A[N/2])
B[N/2]<- Goto #(B[N/2])
for i in 1:length(A) and j in 1:length(B):

if (A[i]<B[j]):
C=C.A[i] # add A[i] to a list C[N]
remove A[i]

if (A[i]>B[j]):
C=C.A[i] # add A[i] to a list C[N]
remove A[i]



Merge Sort (Merging)

def merge(a,b):
""" Function to merge two arrays """
c = []
while len(a) != 0 and len(b) != 0:

if a[0] < b[0]:
c.append(a[0])
a.remove(a[0])

else:
c.append(b[0])
b.remove(b[0])

if len(a) == 0:
c += b

else:
c += a

return c



Merge Sort (Recursive Call)

# Code for merge sort
def mergesort(x):

if len(x) == 0 or len(x) == 1:
return x

else:
middle = len(x)/2
a = mergesort(x[:middle])
b = mergesort(x[middle:])
return merge(a,b)

print mergesort(k)



Questions to ask?

I Is the algorithm correct?
I We can test the correctness of an algorithm by checking a

property called loop invariant. A loop invariant is (as its name
implies a property that remains unchanged through the
succession of loops).

I Is it fast?
I We test the speed of the algorithm by estimating the number of

calculations it performs (assignments+logical+arithmetic
operations).



A. Correctness

1. Can you think of a loop invariant for the Sorting algorithms?
1.1 Does it hold before starting the iteration?
1.2 Does it hold after every iteration process?
1.3 Does it provide a control to show you that the process is over?



Insertion Sort. A Loop Invariant

The elements at position L[1..i] are the same before and
after each iteration

1. Before the beginning of the iteration there is only one element
2. After every iteration, they are the same elements, only now

they are sorted
3. At the end of the run we should have iterated N times

The above 3 conditions prove the correctness of the algorithm



B. Speed

I Calculating the number of processes/calls/calculations made by
an algorithm can be strictly formalized. We are interested in
the general principle which is:

How does the number of calculations scale with increasing
size of input?

I Computer scientists use a concept called “Time Complexity” to
define the type of the algorithm in terms of scalability. This is
a property that is dependent on the structure of the algorithm
and not on the input (of which it is a function).

I We use a notation called Big-O to designate algorithmic time
complexity. For instance: O(n2) means that the algorithm
takes time proportional to the square of the input, while O(n)
means it is a “linear-time” algorithm



Big-O Notation

http:
//bigocheatsheet.com/

http://bigocheatsheet.com/
http://bigocheatsheet.com/


Big-O Notation (Insertion Sort)

I Insertion Sort: takes an array of N and scans it N times.
Each time it takes an i-subset and makes i-1 comparisons. This
is proportional to: T=1+2+3. . . +N-1
which we know to be equal to [n(n+1)]/2
and thus Insertion Sort is O(n2)



Big-O Notation (Merge Sort)

I Merge Sort: takes an array of N and splits it in half, then
sorts each half by recursive calls of the merge function. Let’s
break this into the two components:

I Splitting is done into halves which means that for a list of N,
log2(N) splits will be required

I The merging process is done by parsing the elements of A and
B lists one at a time, thus for N values it takes O(n) time.

Combination of the two gives that Merge Sort is O(nlogn), which
means it is much better than Insertion Sort.



Case 3: Fibonacci Series

Calculate a sum of N numbers where each one is produced
as the sum of the two that came immediately before it.
(the first two numbers are by definition set to 1)

N[1]=1
N[2]=1
N[3]=N[2]+N[1]=1+1=2
N[4]=N[3]+N[2]=2+1=3
N[5]=N[4]+N[3]=3+2=5
etc

The problem: Calculate the Fibonacci element number N



Take #1: Using an Array

N=int(raw_input("Give number for Fibonacci:"))
def fibonacci(N):

fib=[]
fib.append(1)
fib.append(1)
for i in range(2,N):

fib.append(fib[i-1]+fib[i-2])
return fib[i]

output=fibonacci(N)
print "Fibonacci sum for:",N," is ", output



Take #2: Using Recursion

N=int(raw_input("Give number for Fibonacci:"))
def fibonacci(N):

a, b = 1, 1
for i in range(N-2):

a, b = b, a+b
return b

for i in range(N):
fib=fibonacci(i-2)+fibonacci(i-1)

print "Fibonacci sum for:",N," is ", fib



Fibonacci: Analysis

I Take #1
I We create an array of length N
I We go through the array calculating the i-th element with a

simple addition of i-1, i-2

I Take #2
I We swap the values of a, b with b and the sum of the two
I We recursively call the algorithm for i-1 and i-2



Ask yourself

1. How does array-Fibonacci scale with N?
2. How does recursive-Fibonacci scale with N?
3. What is the Big-O notations of the two
4. What do you think about recursion now?



Enough with this. What about Bioinformatics?

I What we will be discussing in this class may appear detached
from the above but it is not so.

I Issues like recursion, time complexity and efficiency will matter
I The way we transform the problem into formal sets of

questions is crucial.



Some (not so simple) problems

I Given a long DNA sequence can you locate a given string of
characters within it.

I Can you say how many times it is there, and where?
I Given two strings of characters can you find the longest

common subsequence of a) un-interrupted characters b)
characters with gaps c) characters with gaps and also some
mismatches?



Bioinformatics Warm-Up

1. You are given a DNA sequence
I Can you count the number of nucleotides of each of the four

bases (A, G, C, T)?
I How many calculations will you need?
I How will you implement it?

2. Now consider the same problem only instead of nucleotides we
need to count the number of all 8-nucleotides. What do you
need to consider to attack the problem?



Why should you care?

Figure 5: Nucleotide Parity

I Bacterial genomes have a particular distribution of nucleotides
along their genome

I The difference of A-T (and G-C) complementary nucleotides
goes through a sort of “phase transition” that splits the
genome approximately in half.

I Do you know what this split is?
I Do you know why it is so?



Nucleotide Skew Analysis of Bacterial Genomes

I Given a bacterial genome
I Count nucleotides in windows of N base pairs
I Calculate the scaled AT-skew as (A-T)/(A+T)
I Create an array of the skew values along the genome
I Locate the transition point



Exercises (to think about)

1. What is the Big-O of Euclid’s algorithm?
2. Euclid’s algorithm is slowest for a=F(b), that is when a and b

are members of the Fibonacci series. Any idea why should that
happen?

3. Find a loop invariant for MergeSort
4. Write a program that calculates the Chargaff Parity Deviation

(for the A,T pair) for a given DNA sequence.


