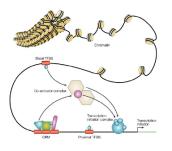
BC205: Algorithms for Bioinformatics. III. Analyzing Biological Motifs

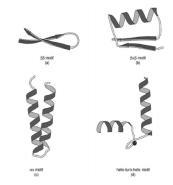
Christoforos Nikolaou

March 22nd, 2017

In previous chapters

- We saw the limitations of composition approaches
 - They can give us rough estimates of sequence properties
 - ▶ They are not precise in locating elements such as HGT, OriC etc

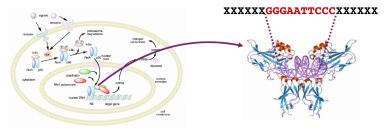

Lucky for us many problems in biology are related with much more specific signals


Motifs

- Most (in not all) forms of messages employ "motifs" for:
 - repat/emphasis : e.g. "I have a dream", MLK, "March on Jobs and Freedom Speech" "Crawth the raven, Nevermore", Edgar Allan Poe
 - coherence: e.g. "Who controls the past, controls the future", George Orwell "1984"
 - subtextualization: e.g. "Fair is foul and foul is fair", William Shakespeare, "Macbeth" (and almost all of "Pulp Fiction")
 - internal reference: e.g. all "leitmotivs" in Operas

Motifs in Biology

- Genome: Codons, Transcription factor binding sites, CpG islands,
- All areas of the genome that interact with proteins in sequence-dependent manner
- Protein: Patterns of aminoacids that are related to particular function, modules, domains etc



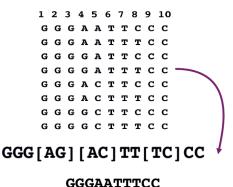
Motif-related biological problems

- How to define a motif?
- How to locate a known motif?
- How to evaluate the motif?
- How to discover unknown motifs in a sequence?

Problem #1: What is a motif?

- How do we define a biological motif?
- What do we need as input?
- What will the output be?

Problem #1: Input


• Given a set of oligonucleotides that fulfil a certain function:

- Sequence have variability, so we should:
- Define the motif as a coherent entity that describes all *instances* of the sequence

G	G	G	A	A	т	т	С	С	С
G	G	G	A	A	т	т	т	С	С
G	G	G	G	A	т	т	С	С	С
G	G	G	G	A	т	т	т	С	С
G	G	G	A	С	т	т	С	С	С
G	G	G	A	С	т	т	т	С	С
G	G	G	G	С	т	т	С	С	С
G	G	G	G	С	т	т	т	С	С

Problem #1: Consensus Sequence

- We may define as "consensus" either the most common sequence variant or
- A set of rules (in the form of a "regular expression") that describes all instances of the motif

Problem #1: The problem with the Consensus approach

- ► As the instances we collect grows bigger, the variants increase
- Regular Expressions don't work

GGGGCATTCC	GGGATATCCC	GGGAATTCCC	GGGAATGTCC	GGGATATTTC GGGGCCTCCC GGGAATTTCC GGGACTGCCC	
GGGAAATTCC	GGGAAATCCC	GGGAATTCCC	GGGACTTACC	GGGGATTTCC GGGAATTTCC GGGACATTCC GGGAATTTCC	
GGAAATTTCC	GGGAATTCCC	GGGGATTTCC	GGGGTTTCAC	GGGAAGGTCC GGGGCTTCCC GGGGCTTTCC GGGAAATTCC	
GGGGCTTTCC	GGGACTTTCC	GGGACATTCC	GGGAATTTCC	GGGACATTCT GGGACAGCCC GGGGCTTTAC GGGACTTCCC	
GGGAATTCAC	GGGAAATCCC	GGAGCTTTCC	GGGACTTTCC	GGGAAACCCC GGGGCTTCCC GGGAATTTCC GGGAAATTCC	
GGGACTTCCC	GGGAATTTCT	GGGAATTCCC	GGGACTTCCC	GGGACTTTCC GGGGATTTCC GGGACATCCC GGGAAATCCC	
GGGATGTTCC	GGGGTCTCCC	GGGACTGTCC	GGGAATTCCC	GGGACTTTAC GGGAATTTCC GGGACTTTCC GGGGCGTCCC	
GGGGTTTCCC	GGGAATTTCC	GGGAATTTCC	GGGGATTTCC	GGGAATGCCC GGGGATTTCC GGGAATTTCC GGGATTTTCC	
GGGGAATTCC	GGGACTTCCC	GGGATTTTCC	GGGAAGTCCC	GGGAAATTCC GGGAATTTCC GGGAATTTAC GGGAAATTCC	
GGGGGTTTAC	GGGACTTTCC	GGGAATTTCC	GGGAATTTCC	GGGACATCCC GGGAATTCAC GGGACTTCCC GGGACTTTCC	
GGGAATTTCC	GGGACTTTCC	GGGGACTTCC	GGGACTTTAC	GGGACTTTCC GGGATACTCC GGGGATGTAC GGGATATCCC	l
GGGAATTCCC	GGGACTTCCC	GGGACTTCAC	GGGGTTACCC	GGGAATCTCC GGGAATTTCC GGGACATCTC GGAAATTCCC	l
GGGAAACTCT	GGGGTTTCCC	GGGATTTTCC	GGGGCGTTCC	GGGAAACTCT GGGGTTTCCC GGGATTTTCC GGGGCGTTCC	l

Πίνακας 3.1: 104 σημεία πρόσδεσης του NF-κΒ από το γονιδίωμα του ποντικιού (Mus musculus)

GG[AG][AG][AGCT][AGCT][ACT][ACT][CT]

How do we describe all the variants without losing in specificity?

Algorithmic Interlude: Edit Distances

- We need a measure to describe differences between variantsE.g.:
 - How different from the most common instance GGGAATTCCC is AAAAATTCCC?
 - How different from the most common instance GGGAATTCCC is GGGTTTACCC?

Edit Distances

- Levenshtein Distance. Allows Insertions/Deletions/Substitutions
- Hamming Distance. Allows substitutions only
- Longest Common Subsequence (LCS). Allows Insertions/Deletions only
- Damerau-Levenshtein Distance. Allows Insertions/Deletions/Substitutions and Transpositions
- Jaro Distance. Allows Transpositions only.

The *Hamming Distance* is the one that best fits our goal for now, but we'll revisit some of the above in the future.

Hamming Distance in motifs

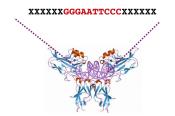
Simply calculate the number of nucleotides that need to be changed from S_1 to become S_2 , assuming two sequences of equal size

G	G	G	A	А	т	т	т	С	С	
T	T		T	T	I	T	T	Т	L	d=1
G	G	С	A	A	т	т	т	С	С	
G	G	G	A	A	т	т	т	С	С	
	T		Т	T	Т			Т	T	d=3
G	G	С	A	A	т	A	A	С	С	

Problem #1: Calculate the Hamming Distance of two strings

```
seq1=str(raw input("Give the 1st sequence to compare:
                                                       "))
seq2=str(raw input("Give the 1st sequence to compare:
                                                       "))
distance=0
if len(seq1) == len(seq2):
    for i in range(len(seq1)-1):
        if seq1[i]!=seq2[i]:
            distance=distance+1
    print "Hamming Distance is equal to: ",distance
if len(seq1) != len(seq2):
    print "Cannot Calculate Hamming Distance"
```

Problem #1: The problem with Hamming/Edit Distances


- Assuming the motif is GGG[AG][AG]TT[TC]CC how good a motif is:
- 1. AAAAATTCCC?
- 2. compared to GGGTTTACCC?
- We actually have two problems:
 - We cannot compare with a "consensus" regexp
 - Even if we did compare with most common sequence variant, the results would be misleading

Why?

Not all positions in the motif are equal

- Comparison of instances with the Hamming Distance disregards the local tendencies in the motifs position
- We need to account for the fact that some positions are more "fixed" and other more "flexible"
- We need a probabilistic description of the motif

AAAAAATTCCC=>d=3GGGGGGTTTCC=>d=3GGGAACCCCC=>d=2

Problem #1: Defining a motif with PWM

- Given a number of sequence of equal size
- Calculate the probabilities of occurrence of *each nucleotide* for *each position* in the sequences
- Create a table of the probabilities

GGGGCATTCC	GGGATATCCC	GGGAATTCCC	GGGAATGTCC	GGGATATTTC GGGGCCTCCC GGGAATTTCC GGGACTGCCC
GGGAAATTCC	GGGAAATCCC	GGGAATTCCC	GGGACTTACC	GGGGATTTCC GGGAATTTCC GGGACATTCC GGGAATTTCC
GGAAATTTCC	GGGAATTCCC	GGGGATTTCC	GGGGTTTCAC	GGGAAGGTCC GGGGCTTCCC GGGGCTTTCC GGGAAATTCC
GGGGCTTTCC	GGGACTTTCC	GGGACATTCC	GGGAATTTCC	GGGACATTCT GGGACAGCCC GGGGCTTTAC GGGACTTCCC
GGGAATTCAC	GGGAAATCCC	GGAGCTTTCC	GGGACTTTCC	GGGAAACCCC GGGGCTTCCC GGGAATTTCC GGGAAATTCC
GGGACTTCCC	GGGAATTTCT	GGGAATTCCC	GGGACTTCCC	GGGACTTTCC GGGGATTTCC GGGACATCCC GGGAAATCCC
GGGATGTTCC	GGGGTCTCCC	GGGACTGTCC	GGGAATTCCC	GGGACTTTAC GGGAATTTCC GGGACTTTCC GGGGCGTCCC
GGGGTTTCCC	GGGAATTTCC	GGGAATTTCC	GGGGATTTCC	GGGAATGCCC GGGGATTTCC GGGAATTTCC GGGATTTTCC
GGGGAATTCC	GGGACTTCCC	GGGATTTTCC	GGGAAGTCCC	GGGAAATTCC GGGAATTTCC GGGAATTTAC GGGAAATTCC
GGGGGGTTTAC	GGGACTTTCC	GGGAATTTCC	GGGAATTTCC	GGGACATCCC GGGAATTCAC GGGACTTCCC GGGACTTTCC
GGGAATTTCC	GGGACTTTCC	GGGGACTTCC	GGGACTTTAC	GGGACTTTCC GGGATACTCC GGGGATGTAC GGGATATCCC
GGGAATTCCC	GGGACTTCCC	GGGACTTCAC	GGGGTTACCC	GGGAATCTCC GGGAATTTCC GGGACATCTC GGAAATTCCC
GGGAAACTCT	GGGGTTTCCC	GGGATTTTCC	GGGGCGTTCC	GGGAAACTCT GGGGTTTCCC GGGATTTTCC GGGGCGTTCC

Νουκλεοτίδιο	1	2	3	4	5	6	7	8	9	10
Α	0.00	0.00	0.03	0.76	0.49	0.23	0.01	0.01	0.10	0.00
С	0.00	0.00	0.00	0.00	0.37	0.03	0.04	0.38	0.88	0.97
G	1.00	1.00	0.97	0.24	0.01	0.05	0.07	0.00	0.00	0.00
т	0.00	0.00	0.00	0.00	0.13	0.69	0.88	0.61	0.02	0.03

Try it yourselves

- Get the sequences of the GATA binding protein from here
 (https://tinyurl.com/ms6rm24)
- Write a program that will create a PWM

Calculating a PWM from a sequence dataset

"your code here"

Problem #1: PSSM: PWMs without the background

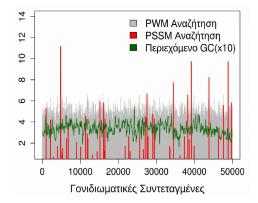
- PWM are sensitive to background nucleotide composition
- This means that sequences rich is some nucleotides will tend to "load" motifs with those nucleotides
- By now we know how to control for that by dividing over a background model
- PSSM (Position-Specific Scoring Matrices) are motifs derived like this:

	1	νον	íßo	NF	-кВ	(P))							Пί	vaĸ	ας	Υпс	βá	θρο	U (Q)		
Νουκλεοτίδιο 1 2 3 4 5 6 7 8 9 10									Νουκ	λεοτίδιο	1	2	3	4	5	6	7	8	9	10			
A	0.00	0.00	0.03	0.76	0.49	0.23	0.01	0.01	0.10	0.00	-		Α	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16
с	0.00	0.00	0.00	0.00	0.37	0.03	0.04	0.38	0.88	0.97			С	0.27	0.27	0.27	0.27	0.27	0.27	0.27	0.27	0.27	0.27
G	1.00	1.00	0.97	0.24	0.01	0.05	0.07	0.00	0.00	0.00			G	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.33
т	0.00	0.00	0.00	0.00	0.13	0.69	0.88	0.61	0.02	0.03			т	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.23
																							/
		No	ουκ		- (5)		1	F 2		loş 3	g ₂ (1 4	P _{i,j} / 5	Q _{i,j})		8	9		10				
		INC			tioi	-	-			-		-	-	'	_	-	-			_			
				Α		Ŀ	7.3	-7.	3	-2.4	2.2	1.6	0.5	-3.9	1 -3	3.9	-0.7	7 .	-7.3	_			
				С		-	8.1	-8.	1	-8.1	-8.1	0.5	-3.1	-2.7	0	.5	1.7	7	1.8				
				G			1.6	1.	6	1.6	-0.5	-4.9	-2.7	-2.2	: -8	3.4	-8.4	4 ·	-8.4	_			
				т		-	7.8	-7.	8	-7.8	-7.8	-0.8	1.6	1.9	1	4	-3.5	5.	-2.9				

Position-Specific Scoring Matrix, PSSM

Problem #2: Finding a motif in a sequence with PWM/PSSM

- Calculate the PWM scores of AAAAATTCCC and GGGTTTACCC. How does this compare with their Hamming Distances
- Now think of how you can use the PWM to scan a longer sequence


Problem #2: Finding a motif: PSSM vs PWM

- 1. Given a PWM, can we calculate the probability of a given pattern to match the motif?
- 2. What should we be careful about the probability calculations? [Hint: Products are sensitive to 0s]
 - $2.1\,$ We should be careful to add "pseudocounts" to PWMs or
 - 2.2 Work with sums instead

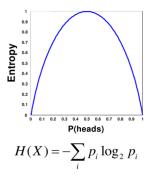
Problem #2: PSSM search

```
import numpy as np
pssm=np.genfromtxt('pssm.tsv', names=True,
+delimiter='\t', dtype=None)
size=len(pssm)
score=[0 for x in range(len(seq)-size)];
for i in range(len(seq)-size+1):
  pattern=""
    for j in range(size):
      pattern=pattern+seq[i+j]
        score[i]=score[i]+pssm[seq[i+j]][j]
    print pattern,"\t",score[i]
```

Problem #2: Finding a motif: PSSM vs PWM

- 1. See how noisy the PWM output is. Why?
- 2. What makes the PSSM more specific?

Problem #3: Evaluating a motif instance


We saw how every motif can be described as a PWM. But:1. How are different PWM describing patterns?2. How strong is the motif given its PWM?

Mathematics Interlude: Information as Entropy

- In 1948 Claude Shannon's pioneering work on message transmission introduce a fundamental concept and gave rise to a whole field of Science called "Information Theory"
- The basis of information theory is the concept of Entropy which is defined as:
 - ▶ Given the set S of n probable outcomes of a "source", each of which has probability P[i]
 - The "Shannon" Entropy of this source is equal to the negative sum of the products of those probabilities and their logarithms, such as: H(S) = −∑_{i=1}ⁿ P[i]log(P[i])

Mathematics Interlude: Information as Entropy

- It derives from Shannon's formula that Entropy maximizes when all possible outcomes have equal probability
- This is directly related to the notion of Entropy as you know it from Physics. Can you see how?

Stop and think: How is this related to motifs?

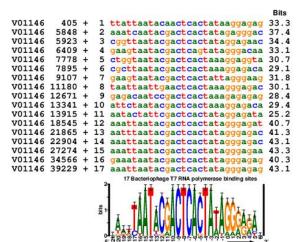
- A motif where all positions are equiprobable for all nucleotides has maximum Entropy
- It also conveys the least possible information. There isn't absolutely anything it can tell us about where the sequence has embedded a message
- According to Information Theory, Information can be measured as the change in the Entropy before and after a message has been transmitted: I(S) = H(S)_{before} - H(S)_{after}

Problem #3: Evaluating a motif with Information (I)

What is the maximum entropy for any given position in a motif?

 $H(S)_{before} = -\sum_{i=1}^{4} P[0.25]log(P[0.25]) = 2$ we will call this the before Entropy

What is the entropy once the message has been transmitted? We will denote as "after" the entropy we can calculate from the PWM:


$$H(S)_{after} = -\sum_{i=1}^{4} P[i]log(P[i]) = H$$
 and thus $I(S) = 2 - H(S)_{after}$

► The key is that the smaller the H(S)_{after} the more we have gained as information, since we are reducing the uncertaintly of the message Problem #3: Calculating the Information Content of a motif

- Each position in the motif gets a score I(p)
- Each nucleotide in each position gets a weight equal to *P* * *log*(*P*)

Νουκλεοτίδιο	1	2	3	4	5	6	7	8	9	10
Α	0.00	0.00	0.03	0.76	0.49	0.23	0.01	0.01	0.10	0.00
С	0.00	0.00	0.00	0.00	0.37	0.03	0.04	0.38	0.88	0.97
G	1.00	1.00	0.97	0.24	0.01	0.05	0.07	0.00	0.00	0.00
т	0.00	0.00	0.00	0.00	0.13	0.69	0.88	0.61	0.02	0.03
	-	_			~	\mathcal{I}				
	H(X)	$=-\sum_{i}$	p_i lo	$g_2 p_i$	I	X)=	$=H_{\eta}$	_{ow} -l	H ueto	÷
									1	*
Θέση	1	2	3	4	٨	6	7	8	9	10
A	_	-	-	4	0.25	6 0.18	7 0.01			
A C	0.00	0.00	0.05		5 0.25 0.19	-		8	9	10
A C G	0.00	0.00	0. 05 0. 0 0	0.92		0.18	0.01	8 0.01	9 0.14	10 0.00
A C G	0.00 0.00 2.00	0.00 9.00 2.00	0.05 0.00 1.75	0.92	0.19	0.18 0.02	0.01 0.05	8 0.01 0.37	9 0.14 1.23	10 0.00 1.75


Problem #3: Plotting Information as Sequence Logo

- Download a set of motif instances from the GATA binding factor here (https://tinyurl.com/ms6rm24)
- Go to the Webpage of Weblogo, an implementation of the Sequence Logo concept here: (http://weblogo.berkeley.edu/logo.cgi)
- 3. Paste in sequences
- 4. Obtain Logo

Problem #3: Evaluation of motifs

Compare the top5% scores of our PSSM and PWM search

Problem #4: The hard one

- Given a set of sequences, can you locate sequence instances that will represent a motif? These should fulfill the following:
 - 1. They should be more common than other (how much more common?)
 - 2. They should occur in close vicinity to each other (but how close?)
 - 3. They are probably going to be conserved in evolution (but how are we going to see this?)

Next time: How do we discover motifs in sequences

Exercises: To think about

- 1. Write a program to scan a sequence of DNA with a given pattern with length L and extract all substrings with Hamming distance of $d \le 2/L$. Key: Think of ways to make it faster
- 2. Write a program that will take the GATA sequences and input and will produce a PWM
- 3. Take the above program and combine it with an analysis of genomic sequence composition (see previous chapter) to:

3.1 Create a background composition model

- $3.2\,$ Create a PSSM based on the BC model and the PWM
- 4. Write the code that given a set of sequences of equal size N, will produce the Entropies and total Information per position that you can use to create a logo